人工智能产业化落地和规模化落地是一个庞大的系统性工程,涉及到从政策到科技,从技术到场景等多个环节,其中人工智能模型是连结物理世界与数字世界的管道,也是人工智能产业化的关键一环。而想要构建完善的人工智能模型离不开机器学习平台,机器学习平台涵盖了算法开发、特征工程、模型训练、测试与优化、部署、模型管理等AI模型全生命周期的功能开发,是AI模型必不可少的重要载体。
近年来产业各界纷纷将机器学习平台作为研发的重点,作为人工智能领域领先企业,百融云创历经3年自主研发了ORCA机器学习框架,提供覆盖模型开发、训练、部署、分析的全周期端到端技术服务,能够帮助企业用户实现模型开发的从无到有,从零到一。
模型的训练和部署环节,是整个模型全生命周期的两个端点。在金融应用场景中,通常情况下,建模分析师会选择python语言去进行模型的开发和训练。但到了部署环节,受到应用场景、金融机构软硬件基础、使用习惯、模型性能、系统监控等因素的影响,可能需要换到了另外一种高性能语言或环境。
传统模式下,需要分析师或研发工程师用人工的方式,敲出一行行代码去完成模型的复现,如果只是一两个模型是完全可以应对的,但一些大型银行每年动辄就要上线几十上百个模型,这些模型的访问量非常大,纵使金融机构近年来储备了大量科技人才,如果还是靠人力来完成这些工作,绝对是不可承受之重。
百融云创ORCA机器学习平台为解决这一难题开拓性研发出ORCA-serving,这是一种跨语言或环境的模型训练与自动化部署技术,如金融机构在模型开发训练阶段应用的是python语言,在部署时会根据需求自动转化为java、rust或者python等语言架构以及web服务器、Spark等部署环境,让建模人员只需关注业务模型开发,即可获取专家工程级的模型部署服务。
值得一提的是,ORCA已经得到高效应用,ORCA-serving已承载百融云创过百亿级的模型推理服务,目前也逐步向合作伙伴进行开放共享,部分功能已应用于本地化模型管理平台产品中。ORCA在实际应用中展现出强大的性能表现,能够将机器学习模型推理性能(TPS)平均提升300%以上,复杂模型提升700%,模型测试与部署时间缩短50%以上。
(免责声明:本网站内容主要来自原创、合作媒体供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )
相关阅读
- TATA木门818静音日 解码千万家庭的新静界 重塑美好人居基石
- 解码“静音+”理念 TATA木门以场景革命重构美好人居新生态
- 8.18万元起售,吉利银河A7正式上市!“五大颠覆”重新定义电混家轿新标准
- AI创新中心从“空间集聚”到“生态共生”
- 新政下的“好房子”实践:TATA木门以智造力承接居住品质升级需求
- 不止于论坛:2025美好人居国际论坛成果落地,TATA木门百家焕新计划开启普惠新航程
- 聚焦首届美好人居国际论坛:从政策到实践,破解“好房子”落地密码
- 从2025美好人居国际论坛看家居产业升级:政策锚定方向,协同重塑价值
- 第十届静音日启动!TATA木门主办美好人居国际论坛重构美好人居新路径
- 第十届818静音日启幕!TATA木门以三大行动锚定美好人居